MAKING MOBILITY HAPPEN. today tomorrow together

HÜBNER EXPERT TALKS

QUIETER GANGWAYS: SOUND INSULATION FOR GREATER COMFORT DR. ALEXANDER UNGEFUG – HEAD OF R&D TEXTILES AND MECHANICS, HÜBNER GROUP

QUIETER GANGWAYS: SOUND INSULATION FOR GREATER COMFORT

SOUND INSULATION

 $P_{\rm a}$ incoming sound power $P_{\rm e}$ transmitted sound power

- a incident sound
- b reflected sound
- c loss by dissipation
- d loss by discharge
- e radiated sound

Sound insulation index R Transmittance τ $R = 10 \log \left(\frac{1}{\tau}\right) = 10 \log \left(\frac{P_a}{P_e}\right) dB$

DETERMINATION OF THE SINGLE-NUMBER VALUE RW

- third octave))

ACCORDING TO DIN EN ISO 717-1

• Measured values R (Frequency range 100 Hz..3150 Hz(16

shifted reference curve according to ISO 717-1

 Rule 1: Move the reference curve down until the sum of the negative deviations (per third octave) from the measured curve are less than or equal to 32 dB.

• Rule 2: Read the weighted sound reduction index Rw from the reference curve at 500 Hz: Rw = 44 dB

SOUND INSULATION MEASUREMENT OF REAL BELLOWS

- State-of-the-art sound insulation laboratory
- Continues development of our Internal experts
- Test acc. EN 16286- 2, ISO 151861-1, (ISO 10140-2)
- We work together with the best-known companies and advisors to extend our knowledge
- We participate in the regulation process to give input and get the newest information

.

- A special construction to create a state-of-the-art forge for sound insulation
- High-tech equipment to get the best development for our customers
- High skilled experts work on the gathering of new know how in this field

INSULATION LABORATORY

SOUND INSULATION REAL SYSTEMS, ANSWERING CUSTOMER REQUESTS

Results of costumer-oriented designs with hitting the targets for sound insulation

DEVELOPMENT OF NEW MATERIALS FOR GANGWAYS

DEPENDENCE ON THE FREQUENCY PATTERN ELEMENT

HÜBNER KNOW HOW : THE INDIVIDUAL PHENOMENA

- Separation of the measured curve into different physical phenomena (e.g. critical coincidence frequency)
- Understanding the possibility to improve the material in each of the segments
- Transfer of the created know-how into customer solutions

(+)dB

(+)dB

- 50

(-)dB

1.2

0.1

0.0

1.0 0.8 0.6 0.4 0.2 0.0

(+)dB

(-)dB

1.0 0.8 0.6 0.4 0.2 0.0

VIBRATION PATTERN FORMATION OF A SAMPLE ELEMENT

Investigations of the vibration behavior as a function of the frequency were carried out

The vibrations could be resolved locally to gain a deeper understanding of the influence of individual components.

From this, further optimizations for our products could be derived

SOUND INSULATION FROM THE THEORY TO THE PRODUCT

THEORY

SIMULATION

VALIDATION

VIBRATION FORMING OF A WAVE

Thank you for your kind attention!

